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1 Introduction

An influential version of Optimality Theory (OT) adopts Correspondence Theory (McCarthy & Prince,

1995), which explicitly invokes a correspondence relation between the elements in input strings and output

strings. This representation allows Correspondence Theory to define a number of faithfulness constraints

which help account for a variety of segmental and prosodic phenomena. Given that the parameters of

Correspondence Theory are an integral part of OT, if Correspondence Theory is within a manageable level

of computational complexity, it would lend credence to OT being a psychologically plausible phonological

theory.

This paper provides a computational analysis of the complexity of GEN and Correspondence Theory.

The computational complexity of the problems we study are stated in terms of the nature of the logic involved

in stating their solutions. The two classes of logic this paper focuses on are Monadic Second Order (MSO)

logic and First Order (FO) logic. We assume some familiarity with these logics and in particular the fact

that MSO logic is strictly more powerful than FO logic. For example, it is known that MSO logic over a

vocabulary for strings defines exactly the regular stringsets (Büchi, 1960). On the other hand, FO logic over

the same vocabulary defines exactly the star-free stringsets (McNaughton & Papert, 1971). It is no accident

that the star-free formal languages are a proper subset of the regular languages; the logic underlying the

former is more powerful than the logic underlying the latter.

The first result of this analysis shows that the GEN function, which maps an arbitrary underlying form to

an infinite set of input-output pairs, each of which stands in a correspondence relation, is not MSO-definable.

One intepretation of this result is that it works against Correspondence Theory, since phonological constraints

and maps have been argued to be within the regular boundary (Kaplan & Kay, 1994) and as mentioned MSO-

definability is associated with this boundary. However, a more charitable interpretation is that GEN should

be viewed as a relation, in which case its computational complexity is still open. We discuss this further in

the relevant section below.

Second, we show that the set of input-output Correspondence-theoretic candidates from a given

underlying representation is FO-definable. This result contrasts with the first one above, and highlights the

importance of careful interpretation of complexity results.

Third, we present evidence from some case studies that the correct input-output Correspondence-

theoretic candidate from a given underlying representation can be accomplished with FO-definable, language-

specific, inviolable constraints without recourse to optimization. In fact, the case studies tentatively suggest

that even weaker logics may be sufficient here, which is in-line with the research program that argues

that phonological patterns are subregular (Heinz, 2010; Chandlee, 2014; Lai, 2015; Jardine, 2016). One

way to interpret this result is that reliance on language-specific, inviolable constraints obviates the need for

optimization without increasing computational complexity. However, we acknowledge that validity of this

interpretation only extends insofar as the case studies are representative of phonological phenomena generally.

In sum, our work thus shows that the representations promoted in Correspondence Theory—that

elements in the input string correspond to elements in the output string—are fairly restrictive computationally,

provided that we do not use the GEN function itself in classic OT.

Our approach is similar in spirit to Potts & Pullum (2002), which uses logic to formalize constraints. The

major difference is that our third result suggests that the complexity stays low even with language-specific,

inviolable constraints, cf. (Scobbie et al., 1996; Jardine & Heinz, 2015). In this regard, our analysis suggests

that there is merit to the representations invoked in Correspondence Theory beyond the role they play in

Optimality Theory.
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This paper is organized as follows. §2 presents the first two results that traditional Correspondence

Theory’s GEN function is not MSO-definable but that the set of candidates from a given input is FO-definable.

In §3 we provide an FO-definable schema for phonological correspondences and illustrate it with some case

studies meant to showcase its flexibility. §4 concludes with some additional discussion.

2 Correspondence Theory

Correspondence Theory (McCarthy & Prince, 1995) characterizes GEN as a function which maps an

underlying form A to a set of ordered triples. Each triple is a candidate. The first element of the triple is

the underlying form as a string. The second element is the surface form as a string. The third element is the

correspondence relation which relates elements in the underlying string to elements in the surface string. An

example is given in (1).

(1) Gen(/abc/) → {(/abc/, [abc], R1), (/abc/, [abcd], R2), (/abc/, [abcd], R3), . . . }

Mathematically, each R is a subset of N ×M where N = {1, 2, . . . n} with n the length of the underlying

string and M = {1, 2, . . .m} with m the length of the surface string. In classic Optimality Theory, the set

of candidates is infinite in size because there is no upper bound on the length of the output string. Of course,

candidates whose output strings have many epenthesized segments are typically harmonically bounded.

2.1 Representing Candidates We model candidates with relational structures. This approach has its

roots in finite model theory (Enderton, 2001; Hedman, 2004; Courcelle & Engelfriet, 2012). (See Potts &

Pullum (2002) and Rogers et al. (2013) for model-theoretic approaches to phonology.) A relational structure

contains a set of domain elements and a fixed number of relations over this set. To model Correspondence

Theory, we only need unary and binary relations.

Unary relations indicate properties of the domain elements. The unary relations used here indicate

whether the node belongs to the underlying string (u) or the surface string (s), and which phonological

segment it is.

There are multiple ways to instantiate the last type of unary relation. One way is to have a unary relation

for each symbol in the string. Thus, if a is a symbol in a string, there would be a unary relation a and

elements in the domain could stand in this relation to indicate they represent such symbols. This is how

Büchi (1960) modeled strings. However, another approach is phonologically motivated. We can let the unary

relations stand for phonological features. In this approach, the unary relations indicate properties like voiced,

obstruent, coronal and so on. In this paper, we avail ourselves of both types as needed. The primary reason

for this is convenience, but it is also worth pointing out that predicates for features are FO-definable from

segments and that predicates for segments are FO-definable from features.

Two binary relations are used here. One indicates whether two domain elements stand in the precedence

relation (<). The other indicates whether two domain elements stand in the correspondence relation (c).

Relational structures can be displayed visually as graphs where the domain elements are nodes of the

graph. These nodes are indexed with numbers to identify them. The unary relations each node belongs to

is expressed by labeling the nodes according to the unary relation. Binary relations between elements in

the structure are drawn as edges connecting nodes, and these edges are labeled to indicate which relation it

represents.

We illustrate relational structures with three candidates (3)-(5) below. Candidate (3) shows a candidate

that violates MAX. Candidate (4) shows a candidate that violates INTEGRITY, UNIFORMITY and IDENT.

Candidate (5) shows a candidate that violates DEP and IDENT.

Note that in the interest of readability, instead of precedence, we use the edges in the graphs to show the

successor relation. The successor relation is FO-definable from precedence as shown in (2).

(2) (x ⊳ y) = x < y ∧ ¬(∃z)[x < z ∧ z < y]
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2.2 The GEN function The GEN function is not MSO-definable. The core reason is stated in Courcelle

& Engelfriet (2012) as Fact 1.37, where U is an arbitrary input string and S is a set of candidates: “For every

monadic second-order transduction f there exists an integer k such that, if f transforms a relational structure

U into a relational structure S, then |S| ≤ k|U |.”
In other words, the size of the relational structure must be bounded by some integer k × n, where n is

the size of the input and k is fixed in advance. Here we do not explicitly provide a relational structure for a

set of candidates, but we do not need to. Since there is no upper bound on the length of the surface string in

a candidate, there will always be some candidate larger than k × n and hence any set containing it will also

be too large. Consequently, the output of GEN must be finite in size for it to be an MSO definable function.

Furthermore, since the set of candidates output by GEN in classic OT is generally assumed to be infinite in

size, it cannot be described with any MSO-definable function.

What does this result mean for phonological theory? There are three possibilities.

The first is that instead of analyzing GEN as a function, we should analyze it as a relation. We are

unaware of a model-theoretic or logical treatment of MSO-definable relations. Although GEN is not a MSO-

definable function, it may be a MSO-definable relation. One way to approach this from a model theoretic

perspective may be with infinite structures (Benedikt et al., 2001).

The second approach is to reconceive GEN as a function from underlying strings to candidates to

a function from underlying strings to contenders. The contenders are the non-harmonically bounded

candidates. Riggle (2004) shows that the contenders typically form a finite set. So it may be the case that

GEN as a function from underlying strings to contenders is MSO-definable.

The third approach is to take this result as a reason to reject classic OT in favor of Harmonic Serialism

(McCarthy, 2008) where GEN is a function which maps an underlying string w to a set of candidates, each of
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which differs at most minimally from w. Restricting GEN in this way might also make it an MSO-definable

function.

To summarize, it is interesting to observe that GEN is not a MSO-definable function, and there are several

alternatives worth pursuing.

2.3 The set of candidates for a given input If we fix one particular input string, then for this input,

the output candidates can be defined with FO-logic. Only five logical statements are needed to describe the

infinite set of possible candidates for a given input. The logical statements, listed in (6)-(10) are all described

with FO-logic over the relational structures described earlier. These statements are explained further below.

(6) Precedence can only be between nodes on same tier:

(∀x, y)
[

x < y → [u(x) ∧ u(y)] ∨ [s(x) ∧ s(y)]
]

(7) Correspondence only between different tiers:

(∀x, y)
[

c(x, y) → (u(x) ∧ s(y))
]

(8) All nodes are either on UR or SR:

(∀x)[u(x) ∨ s(x) ∧ ¬[u(x) ∧ s(x)]]

(9) SR nodes form a string:

(∀x, y)[[s(x) ∧ s(y)] → [x < y ∨ y < x]

(10) UR is /kætz/:

(∃v, x, y, z)[v < x∧v < y∧v < z∧x < y∧x < z∧y < z∧u(v)∧u(x)∧u(y)∧u(z)∧k(v)∧æ(x)

∧t(y) ∧ z(z)]

Statement (6) says that precedence relationships can only be between nodes that belong to the same ‘tier’, i.e.

there cannot be precedence between an underlying and a surface node. Conversely, correspondence edges

can only be between nodes that are on different tiers (7). All nodes have to be either belong to the UR or the

SR, so they cannot be both or neither (8). The surface tier has to form a string, where the definition of a string

is a set of nodes where the precedence relation establishes a linear order (9). Lastly, we need a fixed input

string and statement (10) provides this. In this example, the input string is the word /kætz/, and it is defined

segment by segment.

The graph in (11) shows an example of an output candidate which satisfies these five constraints. Again,

for readability, we show the graph with successor relations instead of precedence relations. (Note that this is

not the correct candidate, as we would expect [kæts] to surface, and not [jæz].)

(11)

ku

1

æu

2

tu
3

zu
4

js
5

æs

6

zs
7

⊳ ⊳ ⊳

⊳ ⊳

c c
c

Every relational structure which satisfies the five statements is a valid candidate for the underlying string

/kætz/.

Generally, for any given underlying string w = a1a2 . . . an the fifth statement can be written as follows.

(12) (∃x1, x2 . . . xn)
[

∧

(xi < xj)i<j

∧

(ai(xi))1≤i≤n

∧

(u(xi))1≤i≤n

]

In (12),
∧

(xi < xj)1≤i<j≤n stands for the conjunction of statements xi < xj whenever i and j take

on values inclusively between 1 and n and i < j. Similarly,
∧

(ai(xi))1≤i≤n means a conjunction of n

statements; for each i between 1 and n inclusive, the ith statement says xi stands in the unary relation

ai. Similarly,
∧

(u(xi))1≤i≤n means each of variable stands in the unary relation which indicates it is an

underlying element.
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In order to get the right mapping of /kætz/ to [kæts], we need additional, language specific constraints.

Examples for dealing with simple phonological mappings, such as assimilation, deletion, and insertion are

shown in the next section.

3 Phonological maps using FO-constraints and Correspondence Theory

3.1 Assimilation We show how assimilation can be accounted for with the example of English obstruent

devoicing. The generalization is that voiced obstruents become voiceless after voiceless sounds. The desired

output for the input /kætz/ is shown in (13) – this would be the same as the optimal candidate picked by OT

constraints.
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In order to state the constraints in FO-logic, we define two predicates: (14) defines a segment where a

voiceless sound is followed by a voiced obstruent, and (15) defines a segment where a voiceless sound is

followed by a voiceless obstruent within a string.

(14) A voiceless sound followed by a voiced obstruent:

TD(x, y)
def
≡ x ⊳ y ∧ voiceless(x) ∧ voiced(y) ∧ obstruent(y)

(15) A voiceless sound followed by a voiceless obstruent:

TT (x, y)
def
≡ x ⊳ y ∧ voiceless(x) ∧ voiceless(y) ∧ obstruent(y)

The devoicing process can be stated in part with a FO-definable constraint using implication (16): if

the underlying segment is a voiceless sound followed by a voiceless obstruent, than they have to be in

correspondence with a voiceless segment and voiceless obstruent, respectively.

(16) (∀x1, y1, x2, y2)[(TD(x1, y1) ∧ u(x1) ∧ c(x1, x2)) → TT (x2, y2)]

For the devoicing example in (13), the variables in constraint (16) are satisfied when x1 = 3, x2 = 7, y1 = 4,

and y2 = 8.

As in OT, additional constraints are needed to ensure other candidates are disallowed. For example,

constraints similar to UNIFORMITY (17), INTEGRITY (18), MAX (19), and DEP (20) are shown below.

(17) (∀x, y, z)
[

(u(x) ∧ c(x, y) ∧ c(x, z)) → y = z
]

(18) (∀x, y, z)
[

(s(y) ∧ c(x, y) ∧ c(z, y)) → x = z
]

(19) (∀x)(∃y)
[

u(x) → c(x, y)
]

(20) (∀x)(∃y)
[

s(x) → c(y, x)
]

We additionally need constraints like IDENT(F) for each feature F except for the features voiced and voiceless.

The general form of the constraint for the features that are faithful everywhere is shown in (21).

(21) (∀x, y)
[

(u(x) ∧ F (x) ∧ c(x, y)) → F (y)
]

For example, the feature coronal is faithful everywhere. The structure in (13) above satisfies (21). There are

two relevant cases when x = 3 and y = 7 and when x = 4 and y = 8. In both instances the y element is

coronal as (21) demands.

For the features voiced and voiceless, they must be faithful everywhere except the devoicing environment
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identified above. In OT, this is accomplished with language-specific constraint rankings, but in the declarative

approach here, such environments are specified in language-specific constraints.

(22) (∀x, y)
[

(

u(x) ∧ voiced(x) ∧ c(x, y) ∧ ¬(∃z)[TD(z, x)]
)

→ voiced(y)
]

The language-specific, inviolable constraint (22) completes the analysis of the devoicing.

It might be possible to get the same desired candidate as a conjunction of banned substructures similar

to Jardine’s (2016) analysis of tonal association. If so, it would indicate that the logical power needed to

state the constraints is actually more restrictive than FO-logic. For instance, the constraint in (23) would be

just one of several more statements that forbid different types of substructures. The idea is that the candidate

whose surface string is (13) is the only candidate that satisfies them all (that is, it does not contain any

forbidden substructure). We illustrate the statement with a graph, where the highlighted part shows the

banned substructure.

(23) ¬(∃x, y)[TD(x) ∧ u(x) ∧ c(x, y) ∧ TD(y)]
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It is an open question whether assimilation and other phonological processes can be approached in this way.

In the interest of simplicity, we only give the conditional-style constraints for the remainder of the case

studies.

3.2 Insertion One example for insertion is Hungarian [j]-insertion in vowel-hiatus (Siptar, 2005). Again,

we define the condition for insertion in (24): a vowel that is succeeded by another vowel. Then the constraint

in (25) simply states that when there is a VV sequence in the underlying string, there must be a [j] element

in the surface string that intervenes between the correspondents of the two underlying vowels. This is also

true the other way around: if there is a [j] on the surface without a corresponding underlying element, then it

must be the case that underlyingly, there was vowel hiatus. The correct candidate is represented in (26) for

the input [fiu].

(24) V V (x)
def
≡ (∃y)[x ⊳ y ∧ vocalic(x) ∧ vocalic(y)]

(25) (∀x)
[

(V V (x) ∧ u(x)) ↔ (∃y, z)[c(x, y) ∧ y ⊳ z ∧ j(z) ∧ ¬(∃w)[c(w, z)]]
]

(26)
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Additional constraints are necessary to ensure the rest of the surface string is faithful. In particular constraints

(17)-(19) and (21). Observe that the constraint (25) replaces (20), which banned epenthesis. Here epenthesis

is only permitted in the particular environment specified by (25).

3.3 Deletion Our example for deletion is Tibetan consonant deletion in consonant clusters (Halle &

Clements, 1983). The generalization depends on syllable structure, as consonant deletion only applies in
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onset clusters. We simplify onset clusters here as word initial consonant clusters.

Again, we define word initial consonant clusters very similarly to vowel hiatus: two successive elements

that stand in the consonantal relation, and are not preceded by any other element (27). Then we give a

constraint, stated as a biconditional: if there is a consonant cluster in the underlying string then there is no

element in the surface string which corresponds to the first underlying consonant (28). The converse is also

true: if there is an element in the underlying form that has no correspondent in the surface, it must be the case

that the underlying element is the first consonant in the cluster. (29) shows the correct candidate.

(27) #CC(x)
def
≡ (∃y)

[

x ⊳ y ∧ consonant(x) ∧ consonant(y) ∧ ¬(∃z)[z ⊳ x]
]

(28) (∀x)
[

#CC(x) ∧ u(x) ↔ ¬(∃y)[c(x, y)]
]

(29)
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As before, the candidate with the correct surface form has to satisfy other faithfulness constraints given by

(17), (18), (20), and (21). (19), which states the MAX constraint, is replaced by (28), which only allows

deletion in the defined environment.

4 Conclusion

This paper provides an analysis of the role of Correspondence Theory in OT and phonological theory

more generally. The analysis is not complete in the sense that there are still unanswered questions worth

pursuing.

For instance, it was shown that the GEN function is not MSO-definable. This result means that

researchers should study the MSO-definability of GEN as a relation, GEN as a function which maps

underlying strings to contenders, and GEN as it is conceived in Harmonic Serialism.

On the other hand, it was also shown that the infinite set of candidates for a given input is MSO-definable,

in fact FO-definable. This lends some credence to the plausibility of correspondence theory and classic OT

in general.

We also showed examples of common processes in phonology that are amenable to a Correspondence

Theoretic analysis with FO logic. These analyses do not rely on optimization but are declarative in the sense

that every constraint is inviolable. Future work would examine long-distance phonological processes such

as dissimilation, vowel harmony, and consonantal harmony. Finally, it is of interest to know the extent to

which phonological maps can be expressed with more restrictive logics (such as the conjunction of forbidden

substructures) using Correspondence-theoretic representations.
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