
1

Advancing protein language models with linguistics: a roadmap for

improved interpretability

Mai Ha Vu
1,C

, Rahmad Akbar
2,☯

, Philippe A. Robert
2,☯

, Bartlomiej Swiatczak
3,☯

, Geir Kjetil

Sandve
4,*

, Victor Greiff
2,*

, Dag Trygve Truslew Haug
1,*,C

1
Department of Linguistics and Scandinavian Studies, University of Oslo, Norway

2
Department of Immunology, University of Oslo ​​and Oslo University Hospital, Norway

3
Department of History of Science and Scientific Archeology, University of Science and Technology of China, China

4
Department of Informatics, University of Oslo, Oslo, Norway

☯
Equal contribution

*
Joint supervision

C
Correspondence: m.h.vu@iln.uio.no, d.t.t.haug@ifikk.uio.no

Abstract

Deep neural-network-based language models (LMs) are increasingly applied to large-scale protein
sequence data to predict protein function. However, being largely blackbox models and thus challenging
to interpret, current protein LM approaches do not contribute to a fundamental understanding of
sequence-function mappings, hindering rule-based biotherapeutic drug development. We argue that
guidance drawn from linguistics, a field specialized in analytical rule extraction from natural language
data, can aid with building more interpretable protein LMs that have learned relevant domain-specific
rules. Differences between protein sequence data and linguistic sequence data require the integration of
more domain-specific knowledge in protein LMs compared to natural language LMs. Here, we provide a
linguistics-based roadmap for protein LM pipeline choices with regard to training data, tokenization,
token embedding, sequence embedding, and model interpretation. Combining linguistics with protein
LMs enables the development of next-generation interpretable machine learning models with the potential
of uncovering the biological mechanisms underlying sequence-function relationships.
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1 Introduction

Figure 1 | Graphical abstract. Advancing protein language models with linguistics: a roadmap for improved
interpretability. A direct application of LMs to protein sequences without any linguistic guidance in the design yields an opaque
black-box model. While this protein model might perform with high Accuracy (defined as high performance on target task), it is
unlikely to contain relevant protein Grammar (i.e., a generalization of proteins that matches biological reality, similar to natural
language grammars as generalizations of linguistic sequences) and it remains low on Interpretability (i.e., a degree to which
human users can understand the model and extract rules from it). In comparison, linguistic sequence models are more likely to
learn a Grammar that matches independent linguistic analysis even without explicit linguistic guidance because linguistic data
already contains structural indicators of basic linguistic units (e.g., punctuation, space), while protein sequence data does not.
Even so, linguistic sequence models remain low on Interpretability without linguistic guidance, as domain knowledge is
necessary to guide rule extraction from the model. An additional challenge that protein sequence modeling faces compared to
linguistic sequence modeling is the absence of larger context beyond sequence. To remedy the disadvantages, in this Perspective
we argue for linguistics-guided domain knowledge incorporation (appropriate pre-training data selection, tokenization, token and
sequence embedding) into protein LMs. Namely, a thorough linguistic examination of natural language LM design can inform
biologically appropriate protein LM design and can yield interpretable, glass-box (transparent) LMs with a protein grammar that
reflects biological domain knowledge. Extracting this protein grammar would facilitate rational biotherapeutics design.
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A growing number of studies apply machine learning tools called Language Models (LMs) (e.g., BERT
(Devlin et al. 2019), RoBERTa (Y. Liu et al. 2019) and GPT (T. B. Brown et al. 2020)) to model
biological sequence data (Bepler and Berger 2021; Ofer, Brandes, and Linial 2021; Alley et al. 2019;
Brandes et al. 2022; Elnaggar et al. 2021; Heinzinger et al. 2019; Rao et al. 2019; B. L. Hie, Yang, and
Kim 2022; Unsal et al. 2022; Rives et al. 2021; Meier et al. 2021; Y. Wang et al. 2019; M. Xu et al. 2022;
Nijkamp et al. 2022). LMs are a primary tool in Natural Language Processing (NLP), a subfield of
computer engineering applied to natural language, and they can be described as probability distributions
over sequences of tokens (e.g., characters, words, subwords); alternatively, they might be called sequence
models.

In contrast, linguistics, a field that studies natural language, uses primarily iterative and analytical
methods to attain its research goal of describing natural language with rules that are understandable to
humans (interpretable) and can transparently explain seen data as well as predict unseen data
(explanatory). Linguistics has become increasingly irrelevant to current high capacity LM design for the
goals of improving performance on various NLP tasks such as machine translation, text summary, or
information retrieval (Naseem et al. 2021; Lin et al. 2021); in fact, studies suggest that LM performance
improves with increase in model scaling and available data (Kaplan et al. 2020; Rae et al. 2022).

The success of natural language LMs without reliance on linguistics is due to the fact that linguistic data
conforms to the distributional semantics hypothesis: the idea that words that share similar contexts (other
words in the sentence, usually positioned close-by) will have similar meaning (Firth 1957). Because many
natural language orthographies are encoded with built-in symbols that indicate linguistic structure, such as
space, punctuation and capitalization, explicit linguistic knowledge is often unnecessary to obtain a
generalization over linguistically meaningful units (i.e., a Grammar, see Figure 1), and so the semantic
meaning of individual words can be approximated via purely statistical distribution. For a successful
adoption of LMs to protein sequences, it is important to ensure that distributional semantics is applicable
to proteins, and for that, it is necessary to determine the biological units of meaning in protein sequences
(i.e., ‘protein words’). Because protein sequences do not have built-in symbols to indicate structure, a
more analytical, ‘linguistic’ approach to finding patterns equivalent to ‘protein words’ is needed.

Furthermore, high-performing protein LMs without additional linguistically informed guidance do not
guarantee the extraction of interpretable, biologically relevant sequence-function rules (Figure 1).
Multiple analyses have benchmarked protein LM performance on questions related to structure and
function (Bepler and Berger 2021; Ofer, Brandes, and Linial 2021; Vig et al. 2021; Villegas-Morcillo et
al. 2021; Unsal et al. 2022; Rao et al. 2019; M. Xu et al. 2022) and showed that protein LMs can perform
remarkably well on these questions. However, current protein LMs by design are opaque black-box
models that are unfit to directly provide a protein grammar, i.e., interpretable, rule-based characterizations
of sequence-function relationships. An example of such rule-based characterizations would be a detailed
list of sequence patterns (e.g., a list of [interdependent] [gapped] k-grams) that are predictive of various
biological functions (A. J. Brown et al. 2019). The lack of known sequence-function rules is a current
bottleneck in rational biotherapeutic drug design (Akbar et al. 2022). To be truly useful for biological
research, the LM must have verifiably learned rules that reflect biological reality.

https://www.zotero.org/google-docs/?EPoHLT
https://www.zotero.org/google-docs/?o6XqzA
https://www.zotero.org/google-docs/?eZQyMb
https://www.zotero.org/google-docs/?JZIRPJ
https://www.zotero.org/google-docs/?JZIRPJ
https://www.zotero.org/google-docs/?JZIRPJ
https://www.zotero.org/google-docs/?JZIRPJ
https://www.zotero.org/google-docs/?k7EnVW
https://www.zotero.org/google-docs/?tRJy8M
https://www.zotero.org/google-docs/?ZxtVW6
https://www.zotero.org/google-docs/?YfHzKR
https://www.zotero.org/google-docs/?YfHzKR
https://www.zotero.org/google-docs/?fWmE0y
https://www.zotero.org/google-docs/?ZyvaJB
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Lastly, linguistics-inspired domain knowledge incorporation can aid with other particular challenges that
stem from the differences between protein and linguistic sequence data (Figure 1). Since currently
available protein sequence data undersamples the potential sequence space and since there is no
comprehensive knowledge of sequence-function mapping rules, there is no guarantee that the available
data contains all relevant domain information, especially for more specialized language models (e.g., 109

publicly available immune receptor sequences (Tobias H. Olsen, Boyles, and Deane 2022) vs. >1014

possible sequences (Greiff et al. 2017; Elhanati et al. 2015)). In comparison, natural language corpora are
more easily verifiable for whether they contain data illustrating all relevant linguistic rules for
well-studied languages, due to pre-existing linguistic knowledge. In NLP, models of under-resourced
languages especially benefit from more rule-based linguistic priors compared to languages that have an
abundance of data available (Kutuzov and Kuzmenko 2019; Y. Pan et al. 2020; Schwartz et al. 2020).
Also, protein sequences do not have a larger context from which to infer their meaning (i.e., their
function), as protein sequences are essentially unordered strings in an organism. In contrast, in natural
language corpora, a sentence is found in a larger context of other sentences, which can aid significantly in
inferring the meaning of the sentence. In the absence of larger context, protein sequences have an even
higher need for domain-based structural analysis of a sequence in isolation in order to determine its
overall function (Jumper et al. 2021). This lack of larger ‘textual’ context for protein sequences also leads
to inherently more limited and smaller data compared to linguistic corpora.

In this Perspective, we examine multiple aspects of the deep LM pipeline, which typically consists of
three main parts once the appropriate training data has been selected (Rogers, Kovaleva, and Rumshisky
2021; Mielke et al. 2021; Naseem et al. 2021): (1) pre-processing (e.g., tokenization), which is the first
step in both (2) pre-training and (3) fine-tuning (Figure 2). Specifically, we discuss pre-training data
selection, tokenization, token embedding, sequence embedding, and model interpretation (Figure 2). For
each aspect, we draw from the ways linguistics can influence LM design and state the original linguistic
motivation behind their implementation, describe the ways current protein LMs have fallen short of
considering these motivations, and suggest alternative choices for improving LMs into more appropriate
models for protein sequences. Our suggestions are meant to point at future exploratory research directions
to address current LM-research-related challenges.

https://www.zotero.org/google-docs/?poqWwb
https://www.zotero.org/google-docs/?BwOAA3
https://www.zotero.org/google-docs/?83uLhe
https://www.zotero.org/google-docs/?QA8hCh
https://www.zotero.org/google-docs/?la70mM
https://www.zotero.org/google-docs/?la70mM
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Figure 2 | Overview of the widely used deep LM pipeline on a protein sequence example. A ML architecture is pre-trained in
a self-supervised manner (Pre-training), independently of the task of interest on large sequencing data (1). Subsequently, the
pre-trained model with added layers is trained to perform the task of interest, e.g., classification (Fine-tuning). Fine-tuning can
involve tasks that require supervision and hence labeled (e.g., protein function, disease, clinical outcomes) and smaller datasets.
Both steps require Tokenization (2) that segments sequences into discrete elements, usually single AAs, due to the lack of
task-informed or biologically meaningful tokens. Pre-training assigns a latent embedding to the tokens (3) that represents their
contextual usage in the language. The token embedding is leveraged during Fine-tuning, and the sequence embedding is
calculated (4) if the fine-tuning task is a form of sequence-based prediction. Interpretation of fine-tuned models, which so far
remains in its initial stages, would enable sequence-function rule discovery, such as function-associated long-range sequence
dependencies (5).

2 Task-specific pre-training data selection can improve model performance and interpretability

Pre-training is a process in which an LM learns the statistical distribution of a large corpus of data, most
typically by identifying missing tokens in a text. Pre-training thus generates a probabilistic model of
protein sequence data without explicit supervision, which then can be leveraged for various structural and
functional prediction tasks. The probabilistically distributed set of sequences that the LM aims to model is
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called the language. However, because it is impossible to exhaustively list all sequences of an
unboundedly large language, only a representative sample can be given to the model in the form of the
pre-training dataset. Data points in the pre-training dataset thus define the language that LMs model: for
example, BERT, an LM pre-trained on English Wikipedia and an English book corpus would be a general
model of English (Devlin et al. 2019), while BioBERT, which is pre-trained on biomedical texts only (Lee
et al. 2020) is a model of biomedical English. Note that in this sense, “language” does not necessarily
align with the conventional definition of a natural language, such as Norwegian, Indonesian, or Swahili.

A major challenge for protein LMs is determining a rigorous definition of the protein language to be
modeled as well as the selection of a pre-training dataset that not only reflects this language but can also
be useful in downstream tasks of interest. While pre-training datasets can be unlabeled due to the
self-supervised nature of the pre-training task, it is imperative that they contain information that is
specifically useful for more data-limited downstream supervised tasks that require labeled data (Devlin et
al. 2019) and also suitable for learning extractable rules that reflect genuine domain knowledge. Due to
the non-uniform distribution of types of information in datasets, it is difficult to establish a priori how
large such datasets should be exactly to be informative. For reference, English language BERT was
trained on a corpus of 3⨉10⁹ words (Devlin et al. 2019) and GPT-3 was trained on 4⨉1011 tokens (T. B.
Brown et al. 2020). In so far as there is considerable number of studies on the effects and limitations of
pre-training data choice on natural language LM behavior (Qiu et al. 2020; Bender et al. 2021;
Doddapaneni et al. 2021; Shin et al. 2022; Bender and Koller 2020), a similar investigation into protein
LMs is lacking.

Natural language LMs pre-trained on large unannotated linguistic corpora can be applied to various
linguistic tasks that may even involve data that is fairly different from the pre-training data due to
distributional semantics. Distributional semantics assumes a strong connection between the distributional
properties of a token and its semantic meaning (Firth 1957). As long as tokens retain the same semantic
meaning in the same contexts across different texts and across different tasks, the tokens should be able to
leverage this inferred semantic meaning in fine-tuning datasets that share distributional similarities with
the pre-training datasets (Qiu et al. 2020). For example, a pre-trained LM can learn to assign different
vector embeddings (i.e., different ‘semantic meanings’) to the word ‘bank’ when it follows ‘river’ (to
mean the land alongside a river) compared to its higher frequency meaning of monetary establishment;
these learned embeddings can be then transferred and aid fine-tuning for other downstream tasks.
Furthermore, distributional semantics allows the sharing of information between tokens with similar
meaning: if an LM has learned during pre-training that ‘bank’ has a similar meaning to ‘broker’, it can
transfer the knowledge it learns about ‘broker’ during fine-tuning training to ‘bank’ during fine-tuning
testing, even if there is no occurrence of ‘bank’ in the fine-tuning training dataset. It remains an open
question whether distributional semantics is a reasonable assumption for protein sequences when it comes
to the functional meaning of protein tokens; that is, whether a given protein token retains the same
functional meaning when transferred into a new sequence as long as it is in a similar context.

Even in NLP, defining the modeled language is nontrivial and it must align with the final downstream task
goals. For example, several domain specific natural language LMs have been developed to capture
domain-specific token meaning without interference from more general English, such as SciBERT for
scientific texts (Beltagy, Lo, and Cohan 2019) and BioBERT for biomedical texts (Lee et al. 2020). An

https://www.zotero.org/google-docs/?Kv4PQi
https://www.zotero.org/google-docs/?tlS1KX
https://www.zotero.org/google-docs/?tlS1KX
https://www.zotero.org/google-docs/?u2QQkL
https://www.zotero.org/google-docs/?u2QQkL
https://www.zotero.org/google-docs/?xBD5Bk
https://www.zotero.org/google-docs/?XYLNKj
https://www.zotero.org/google-docs/?XYLNKj
https://www.zotero.org/google-docs/?Al1WcZ
https://www.zotero.org/google-docs/?Al1WcZ
https://www.zotero.org/google-docs/?KVEjjb
https://www.zotero.org/google-docs/?SFGm1H
https://www.zotero.org/google-docs/?U8xsg0
https://www.zotero.org/google-docs/?y5IbqB
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analogous protein LM would be one that is specific to a particular type of protein, such as the
antibody-specific LMs AntiBERTa (Leem et al. 2021), AntiBERTy (Ruffolo, Gray, and Sulam 2021), and
AbLang (Tobias Hegelund Olsen, Moal, and Deane 2022).

An opposite strategy is to use the most general and largest possible dataset for pre-training, while
answering questions that only target a subset of those sequences. For example, LMs pre-trained on
multiple natural languages have been leveraged for monolingual tasks, cross-linguistic tasks such as
machine translation, and zero-shot learning, which in the multilingual LM context is defined as
fine-tuning the LM on labeled data in a source language, but then test on a different target language
(Doddapaneni et al. 2021). The pre-training data for multilingual LMs usually include unlabeled data
from both the source and target languages (Doddapaneni et al. 2021).

Multilingual LMs are of particular interest for protein LMs, because they open up the possibility of
leveraging an LM pre-trained on all available millions of protein sequences to perform tasks relevant to
only a small subset of those sequences (e.g., antibody receptors) that by themselves would not be large
enough for learning embeddings in a self-supervised manner. Furthermore, multilingual LMs could
potentially be applied to zero-shot or few-shot learning problems in biology too, where source and target
datasets differ during the fine-tuning phase. However, studies in NLP demonstrated that the performance
of multilingual LMs remains limited compared to monolingual LMs; their performance correlates with the
size of relevant language training data either in the pre-training or fine-tuning phase (Conneau et al. 2020;
Agerri et al. 2020; C.-L. Liu et al. 2020; Lauscher et al. 2020), and with the similarity between the source
language and the target language in the case of zero-shot learning (de Vries, Wieling, and Nissim 2022).

In the most extreme zero-shot learning cases, LMs have shown capability for knowledge transfer between
drastically different types of data (Kao and Lee 2021; Krishna, Bigham, and Lipton 2021). Kao and Lee
pre-train their model on linguistic data, then fine-tune on proteins in one instance, and music on another.
Since it is highly implausible that for example LMs pre-trained on natural language would learn patterns
that reflect genuine and scientifically useful domain knowledge in biology or music (Kao and Lee 2021),
LM performance alone cannot be a reliable criterion for pre-training data selection, especially in these
cases, and a priori study of the problem and sequence distribution are necessary.

Based on current results in NLP, it is likely that LMs that are pre-trained on all available protein
sequences will be most appropriate for downstream tasks that predict general features of proteins, such as
secondary structure, amino acid contact in the structure, and stability (Rao et al. 2019). To answer
questions that are specific to only certain types of proteins, such as antibody affinity maturation or epitope
prediction, which are only applicable to antibody sequences, specialized antibody LMs are likely to
perform better (Leem et al. 2021; Tobias H. Olsen, Boyles, and Deane 2022; Ruffolo, Gray, and Sulam
2021; Ruffolo, Sulam, and Gray 2022; Shuai, Ruffolo, and Gray 2021; Ostrovsky-Berman et al. 2021): for
example, AntiBERTa outperforms ProtBERT, a general protein model (Elnaggar et al. 2021) on a number
of antibody-specific questions (Leem et al. 2021).

In order to choose the appropriate pre-training data that can contribute to true scientific insights, there
thus needs to be careful rational consideration whether it contains information transferrable to the
downstream task, more empirical study to determine the viability of different types of pre-training data

https://www.zotero.org/google-docs/?J4vayw
https://www.zotero.org/google-docs/?alvQ4z
https://www.zotero.org/google-docs/?lTf7M8
https://www.zotero.org/google-docs/?SxkAui
https://www.zotero.org/google-docs/?9zP5Eh
https://www.zotero.org/google-docs/?f1jzP5
https://www.zotero.org/google-docs/?f1jzP5
https://www.zotero.org/google-docs/?3JBnLE
https://www.zotero.org/google-docs/?agAc46
https://www.zotero.org/google-docs/?OJqvzA
https://www.zotero.org/google-docs/?9omUPf
https://www.zotero.org/google-docs/?BU28aW
https://www.zotero.org/google-docs/?BU28aW
https://www.zotero.org/google-docs/?6sufGR
https://www.zotero.org/google-docs/?ihkhqV
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for various fine-tuning tasks compared to randomly generated nonsense data, and more available large
datasets for specialized types of proteins. The last two points may be addressed with computational
simulations (Robert et al. 2021; Marcou, Mora, and Walczak 2018; Weber et al. 2020; Morris, White, and
Crowther 2019), which can generate arbitrarily large datasets with a priori defined rules to test different
approaches.

3 Linguistically-guided tokenization motivates a search for meaningful biological units in protein
sequences

Figure 3 | Advancing protein sequence tokenization from currently popular simple heuristics to complex methods that

https://www.zotero.org/google-docs/?8J3c9T
https://www.zotero.org/google-docs/?8J3c9T
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would generate biologically functional protein tokens akin to linguistically sound tokens in natural language. Tokenization
methods must balance three distinct goals. Linguistically sound tokens should atomically map to well-defined, abstract functional
meaning. Technical constraints in ML necessitate that the generated set of possible tokens is finite and small in number (finite
vocabulary), and that tokenization yields a LM with low entropy for a fixed vocabulary size (low entropy). Current practice in
protein LMs is to use simple heuristics that result in tokens based on single amino acids or n-grams. While such simple heuristics
yield a finite and small vocabulary, they do not map to functional meaning and it is unclear how low the generated LM entropy is.
Information-theoretic tokenization methods are one step more complex, and are currently popular in natural language LMs. They
also result in a finite, though larger vocabulary than simple heuristics do, and they generate low entropy LMs, but it is still
unclear whether they would map to functional meaning in proteins. Finally, the most complex method is domain-based
tokenization that is specific to a research question. The tokens yielded with this method map to well-defined functional meaning,
but might potentially result in an arbitrarily large, practically non-finite vocabulary. They should still generate low entropy LMs.
It is yet to be seen how domain-based tokens manifest, but they might be discontinuous, overlapping, and they might be
ambiguous, meaning that there might be multiple possible segmentations for a given sequence. Domain-based tokenization is
closest to biologically sound protein tokens akin to linguistically defined tokens in natural language.

Just as understanding a language requires knowledge of its basic vocabulary, processing sequence data
requires identification of its discrete information units. Breaking down unstructured sequence data into its
basic building blocks or tokens, whether through domain knowledge or through a tokenization algorithm,
is therefore a fundamental step in an LM pipeline (Figure 2). Tokenization in NLP serves computational
goals and ideally it can also fulfill linguistic goals. From a computational perspective, tokenization is
useful because it reduces data sparsity: it enables the representation of unseen sequences as a combination
of already seen tokens drawn from a finite vocabulary, with the trade-off that it results in longer encoding
for each sequence (Mielke et al. 2021). Thus to fulfill the computational goals, tokenization needs to
create a relatively small, finite but exhaustive vocabulary that avoids out-of-vocabulary tokens.
Furthermore, tokenization is preferably unsupervised and results in an LM with low information entropy
distribution for a given vocabulary size, which ensures lower perplexity (the ability for a model to predict
a sample) (P. F. Brown et al. 1992; J. Xu et al. 2021) (Figure 3). From a linguistic point of view, the main
criteria is that tokens should correspond to morphemes: atomic units carrying abstract meaning that
cannot be inferred from the characters alone. Such meaningful tokens have been traditionally derived
through careful manual linguistic analysis, and necessitate an ever-expanding open vocabulary as natural
languages constantly admit new words.

In current NLP practice, tokenization methods are a matter of trade-offs between ML requirements and
linguistic criteria, and thus can range from simple heuristics such as space-delimited tokenization to more
information-theoretic, data-driven methods such as Byte-Pair-Encoding (BPE) (Gage 1994) and its
varieties, to hand-crafted tokens derived from linguistic analysis (Mielke et al. 2021). Developing
tokenization algorithms is an active field of research within NLP, and the performance of different
tokenization methods has been extensively studied (Mielke et al. 2021; Pinter 2021). Results show that
there is no single optimal tokenization strategy, as best practices depend on the intended task, the
language, and available data (Hofmann, Pierrehumbert, and Schütze 2021; Kutuzov and Kuzmenko 2019;
Pinter 2021; Mielke et al. 2021; J. Xu et al. 2021).

For protein LMs, similarly extensive investigations of diverse tokenization strategies and their effects on
LM performance are lacking, because there is no biologically informed tokenization equivalent to
linguistically informed tokenization in NLP, and the biological rules for assembling protein building
blocks mapped to semantic meaning, defined here as specific, abstract functions, remain unknown below
the protein domain level. To build more robust protein LMs, we argue for more extensive benchmarking

https://www.zotero.org/google-docs/?1f1DAI
https://www.zotero.org/google-docs/?tTyvEL
https://www.zotero.org/google-docs/?CNinIl
https://www.zotero.org/google-docs/?MhHYpO
https://www.zotero.org/google-docs/?NpwWFN
https://www.zotero.org/google-docs/?paxUk3
https://www.zotero.org/google-docs/?paxUk3
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studies of different tokenization methods and for more effort directed into defining ground truth,
biologically informed sequence tokens that reflect discrete protein functional groups (Figure 3). Given the
limited size of protein sequence data, especially for certain types of proteins, we believe that defining
hand-crafted, domain-informed tokens is necessary for building an effective LM, similarly to how
linguistically guided tokenization leads to better results for under-resourced languages (Kutuzov and
Kuzmenko 2019; S. J. Pan and Yang 2010; Schwartz et al. 2020).

Currently the most popular protein tokenization methods remain at the simplest level, as they are either
amino acid-based (Alley et al. 2019; Heinzinger et al. 2019; Elnaggar et al. 2021; Littmann et al. 2021;
Madani et al. 2021; Villegas-Morcillo et al. 2021; Brandes et al. 2022) or k-gram-based (typically
3-grams) (Asgari and Mofrad 2015; Ostrovsky-Berman et al. 2021; Yang et al. 2018) (Figure 3). The
estimated entropy rate with amino acid-based tokenization for a very small sample of protein sequences is
2.4-2.6 (Strait and Dewey 1996), while the estimated entropy rate for English based on character-based
tokenization is 0.6-1.75 (Shannon 1951; P. F. Brown et al. 1992). Information theoretic measures such as
entropy rate should be consistently reported for any new protein LMs so that they can be compared to
natural language LMs, but these measures are often missing. Even if the performance of protein LMs with
current tokenization methods is high, significant divergence in entropy rate between protein and natural
language LMs indicates a possibility for better alternative tokenization methods.

When it comes to validating the meaning of the tokens gained from simple tokenization, both amino acid
and k-gram token embeddings cluster along physicochemical properties, which are individual amino acid
properties (Alley et al. 2019; Asgari and Mofrad 2015; Ostrovsky-Berman et al. 2021). Thus, based on the
published results, for the purposes of finding biological tokens with more abstract function, neither amino
acid nor k-gram tokenizations are satisfactory. There needs to be further research to determine whether
these simple tokens cluster along more abstract biological behavior, such as more global properties of the
protein itself, but it is likely that only more complex tokens can reflect complex biological functions.

Instead of using simple amino acid or n-gram tokenization, a more sophisticated method is to extract
tokens of variable size using data-driven, information-theoretic algorithms; this type of tokenization
method is the most popular in current NLP applications (Mielke et al. 2021). Only a few studies applied
these types of algorithms to protein sequences (Devi, Tendulkar, and Chakraborti 2017; Asgari, McHardy,
and Mofrad 2019; Y. Wang et al. 2019; Brandes et al. 2022; Szymborski and Emad 2022), and their
effectiveness in protein LMs remain mixed compared to simpler tokenization methodologies (Y. Wang et
al. 2019; Brandes et al. 2022; Szymborski and Emad 2022). Given that in NLP, new information-theoretic
tokenization algorithms are actively developed (Gage 1994; Kudo and Richardson 2018; Mielke et al.
2021; Pinter 2021), there are still numerous unexplored options to implement and test in protein LMs.

Furthermore, in previous studies biologically sound tokens were either validated in terms of their
performance on a downstream task (Devi, Tendulkar, and Chakraborti 2017) or in terms of similarity to
experimentally verified motifs (Asgari, McHardy, and Mofrad 2019). Even so, the specific functional
meaning of the generated tokens remains undefined, and thus these tokens do not reach the equivalent
standard for linguistically sound natural language tokens, which should have clear mapping to specific
meaning. It is also known from studies in NLP that information-theoretic algorithms, though widely used
due to their efficiency, are not reliable for finding linguistically sound tokens (Hofmann, Pierrehumbert,

https://www.zotero.org/google-docs/?grFPg1
https://www.zotero.org/google-docs/?grFPg1
https://www.zotero.org/google-docs/?2CwBWv
https://www.zotero.org/google-docs/?2CwBWv
https://www.zotero.org/google-docs/?tcLDEP
https://www.zotero.org/google-docs/?1oBN0I
https://www.zotero.org/google-docs/?s4ncyP
https://www.zotero.org/google-docs/?kWk1DO
https://www.zotero.org/google-docs/?LtLoRE
https://www.zotero.org/google-docs/?KDdBAN
https://www.zotero.org/google-docs/?KDdBAN
https://www.zotero.org/google-docs/?omlZKR
https://www.zotero.org/google-docs/?omlZKR
https://www.zotero.org/google-docs/?1QGYdK
https://www.zotero.org/google-docs/?1QGYdK
https://www.zotero.org/google-docs/?SfDXQo
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and Schütze 2021; Hofmann, Schütze, and Pierrehumbert 2022). In the absence of well-defined,
biologically meaningful protein tokens, a truly informative testing of tokenization algorithms remains
impossible.

Finally, an unexplored possibility is building a rule-based tokenizer grounded in domain knowledge for a
specific downstream task of interest. Defining biologically sound protein tokens with the criteria that they
map to well-defined biological function remains a challenging task, and previous research often resorted
to pragmatically defined quantitative measurements, as seen above. In contrast, hand-crafted protein
tokens, where the only criteria is that they map to some biological function relevant to a downstream task
are less straightforward and more labor-intensive to generate; it necessitates domain-based expertise to
hypothesize how such tokens would manifest. Based on known properties of protein structure and
function, meaningful protein tokens might be discontinuous, overlapping, and each sequence might need
to map to several different tokenization possibilities (Figure 3), unlike natural language tokens in most
cases. For example, in the case of antibody sequences, one might define tokens for a given antibody
receptor to be multiple different possible paratopes, which are a set of non-continuous amino acids that
interact with the recognized antigen (Akbar, Robert, Pavlović, et al. 2021; Robert et al. 2021), and map
different antigen specificity to each different paratope tokenization.

If protein tokens are defined to be non-continuous, overlapping and possibly ambiguous, it will also be
necessary to employ alternative LM technology to appropriately process them. One naive solution would
be to shift from non-continuous tokens to smaller continuous subtokens with learned long-distance
dependency between them, but this strategy misses the opportunity of actually identifying meaningful
tokens, and conceptually mixes tokenization with long-distance dependency rules at the expense of higher
interpretability. Another possibility, employed in NLP, is to re-order the non-continuous tokens (Welleck
et al. 2019; Stern et al. 2019) so they become continuous.

In any case, given the amount of expert knowledge necessary to define biologically meaningful tokens,
such hand-crafted, function-based tokenization might only be valuable in practice if it is possible to
develop an unsupervised algorithm that can tokenize novel sequences. A possibility is to train a tokenizer
based on a large number of defined tokens in protein simulations; for example, simulated antibodies in
high resolution can give information about interacting and non-interacting segments (Robert et al. 2021),
which then can be used to train a tokenizer. Further evaluation would be needed to compare the results
from simulated data to the desired ground truth in real world data.

Altogether, there remain many open questions regarding protein tokenization, most importantly, the
definition of biologically sound protein tokens akin to linguistically sound tokens for language to serve as
ground truth, and comparing the performance of various tokenization methodologies in terms of how well
they approximate the ground truth as well as how they might influence protein LM performance on
downstream tasks. The fact that proteins contain units that compositionally determine their function (at
least at the scale of protein domains (Gimona 2006)) similarly to how linguistic tokens compositionally
map to sentence meaning, suggests that analytic, linguistic tokenization methods may be transferable to
protein tokenization, given more robust data and investigations.
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4 Linguistic considerations require token embeddings that capture protein function for
interpretability

For tokens to be used in a deep learning environment, they ideally are numerically represented in a way
that reflects the similarities and differences between these units. These representations of tokens,
determined by their context of use, are called embeddings, and are represented as vectors in a
multidimensional vector space. Token embeddings are initially calculated during pre-training, and then
are further refined during fine-tuning. Pre-trained embeddings can be extracted from the hidden layers of
the pre-trained LM and then leveraged as input for downstream tasks that use much smaller datasets
(Figure 2) (Devlin et al. 2019). The linguistic function of a token embedding is to reflect the relevant
linguistic role of the token in the text. In the case of protein tokens, these roles are equivalent to their
biological functions or other contextual aspects that cannot be easily captured conceptually due to their
non-linearity and complexity. Being able to capture the functional meaning of protein tokens would also
improve the interpretability of the model.

Following distributional semantics, by pre-training LMs to predict tokens based on their context in large,
unannotated linguistic data, the latent vector representation associated with a given token reflects that
token’s context and presumably correlates with its lexical meaning. The information captured by the
embedding vector is typically validated by showing that synonymous tokens cluster close to each other in
the embedding space visualization and have high cosine similarity, or with arithmetic calculations, such as
king-man+woman≈queen (Mikolov, Yih, and Zweig 2013). Note that this type of validation requires a
priori knowledge about token meaning. A weakness of this validation method is also its staticness: there
are several ways for two words to be related (e.g., king-queen and king-chief can both be closely related
pairs), and so similarity is always along only certain attributes (Schluter 2018). It is thus important to have
a well-defined similarity attribute in mind before validating token embeddings. The success of the
fine-tuning task can also indicate, albeit only indirectly, the usefulness of the vector embeddings.

For protein LMs, it is uncertain whether distributional semantics is plausible as the working principle
behind mapping protein token to functional meaning, that is, whether the biological function of protein
tokens is actually encoded by their contexts. To answer this question, there first needs to be a clear
definition of ground truth, task-specific protein tokens with known functional meaning. Furthermore, it is
likely that different downstream tasks would require different token embedding methods that are altered
from current mainstream NLP practice. Therefore, it is necessary to have clear theoretical reasoning about
the definition of protein token meaning before designing the appropriate LM pre-training task.

Most current protein LMs directly borrow standard NLP pre-training tasks for token embedding, without
further justification or reasoning (Alley et al. 2019; Asgari and Mofrad 2015; Heinzinger et al. 2019;
Leem et al. 2021; Ostrovsky-Berman et al. 2021; Elnaggar et al. 2021; B. Hie et al. 2021). Protein LMs
have also closely followed the evolution of embedding methods in NLP, moving from non-contextual,
rigid token embedding techniques such as word2vec (Mikolov et al. 2013; Asgari and Mofrad 2015;
Asgari, McHardy, and Mofrad 2019; Ostrovsky-Berman et al. 2021) where each token has a fixed
embedding vector, to contextual token embeddings such as ELMo (Peters et al. 2018; Heinzinger et al.
2019; Littmann et al. 2021; Elnaggar et al. 2021; Villegas-Morcillo et al. 2021) and BERT (Devlin et al.
2019; Elnaggar et al. 2021; Leem et al. 2021; Rao et al. 2019), where the token embeddings depend on
context. All token embedding tasks involve predicting a token based on its context, where context can be
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either a window of k-grams (as in word2vec), all previous tokens (as in LSTMs), or everything else in the
sequence (as in transformer-based models). The tokens, which often are amino acids, are usually
represented with one-hot encoding, and the context is defined as the rest of the protein sequence itself. In
natural language, non-contextual token embeddings are unsatisfactory due to polysemy (the fact that
words can have multiple meaning, depending on context), and the same is likely to hold for protein
sequences, where biological function is typically encoded in several non-linear, long-distance
dependencies (Akbar, Robert, Pavlović, et al. 2021).

As an alternative to using the rest of the protein sequence as the context that defines token meaning,
context could be defined with the downstream task in mind. For example, in the case of antibody binding
prediction, it could be reasonable to define the meaning of antibody tokens as the antigens they interact
with by encoding the input as antibody-antigen pairs to begin with, before transferring the latent
embeddings to novel antibody sequences. In existing protein LM studies, an example for an alternative
definition of context is found in ProteinBERT (Brandes et al. 2022), which was pre-trained on protein
sequences encoded together with their Gene ontology (GO) annotation, which is an annotation of the
protein sequence function. The result is that the embeddings of single amino acids contained information
from both the sequence and the GO annotation of the sequence. It remains to be determined how
information about GO annotations contributed to better performance on the final tasks, and whether there
is a bias toward better performance on only certain types of downstream tasks.

Another possible change is to pre-train the protein LM on protein-specific tasks, in addition to the
self-supervised language modeling task, similarly to training natural language LMs to learn syntactic
knowledge in addition to standard language modeling tasks (Dyer et al. 2016; Eriguchi, Tsuruoka, and
Cho 2017). One popular self-supervised pre-training task is structural information prediction (Bepler and
Berger 2021; Chen et al. 2022). However, as with ProteinBERT, there is a lack of deeper discussion of the
information captured by LMs and of the downstream tasks the LMs would be biased to perform well on
due to the pre-training task. For antibody sequences for example, different folding structures might bind
different antigens (Guest et al. 2021), so pre-training on structural information might not be appropriate,
as it would encode rigid structural information in the token embeddings. This does not negate the fact that
structural information can be useful for antibody function prediction during the fine-tuning phase (Akbar,
Robert, Pavlović, et al. 2021; Akbar, Robert, Weber, et al. 2021), provided that structural information is
not rigidly determined during the pre-training phase. Furthermore, pre-training tasks that rely on
information beyond just the sequence itself cannot be used if only unlabeled sequence data is available.

Token embeddings extracted from protein LMs are usually validated through clustering plots (Alley et al.
2019; Asgari and Mofrad 2015; Ostrovsky-Berman et al. 2021; Heinzinger et al. 2019) and through
performance on downstream tasks (as seen for example in ProteinBERT (Brandes et al. 2022; Bepler and
Berger 2021)). Besides the general limitations of clustering discussed above (i.e., the definition of
similarity), another difficulty particular to protein tokens is that there is a lack of knowledge about the
abstract functional meaning of protein tokens; what is known only is the physicochemical properties of
the amino acids. Accordingly, in all studies that performed a clustering analysis, whether protein tokens
were amino acids or 3-grams, similarity was defined in terms of physicochemical properties and tokens
were indeed shown to cluster along those properties. None of the studies show whether amino acid and
3-gram tokens also encode more abstract functional meaning, likely because more abstract functional
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meaning can only reasonably be expected to be encoded in larger tokens that are gained from
domain-based tokenization.

For sequence-based prediction tasks, token embeddings are the sole source for deriving sequence
embeddings, since protein sequences cannot rely on a larger context of ‘protein text’ the same way
linguistic sentences do on linguistic texts. Currently the most popular method for calculating protein
sequence embedding is through average pooling (i.e., they take the average of the token embeddings)
(Alley et al. 2019; Elnaggar et al. 2021; Rao et al. 2019; Heinzinger et al. 2019; Detlefsen, Hauberg, and
Boomsma 2022). In contrast, linguistics provides a principled, rule-driven method for deriving sentence
meaning from structure called compositional semantics (Montague 1970), and there are multiple
alternative, structure-sensitive sequence embedding techniques in NLP as well (e.g., structurally informed
ones (McCoy, Frank, and Linzen 2020; Tai, Socher, and Manning 2015)). For protein LMs, it remains an
understudied question whether these other strategies could improve performance and contribute to better
overall interpretability (Detlefsen, Hauberg, and Boomsma 2022).

In summary, protein LMs lack an extensive investigation into the information that their learned token
embeddings contain, as all evaluation remains superficial with plotting physicochemical properties and
indirect with benchmarking on downstream tasks. We argue that together with domain-based tokenization
and token embedding task definition that is directly relevant for the research question at hand, token
embeddings could capture more abstract biological functions that go beyond physicochemical properties.
Such token embeddings would also significantly improve the interpretability of the protein LMs built with
them.
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5 Interpretability methods applied to protein language models can aid biological rule discovery

Figure 4 | Interpretability methods for protein LMs. (A) Rule-based protein engineering workflow with protein LMs.
Blackbox protein LMs pre-trained to model the appropriate experimental data are expected to learn biological sequence-function
rules present in the pre-training data. Rule- and pattern-extraction methods can increase the explainability and interpretability of
the LM, resulting in a glass box LM with interpretable sequence-function rules. Sequence-function rules then can be leveraged
for protein engineering. Engineered proteins that have been experimentally validated can potentially be added to the training data
for improving protein LMs. (B) Interpretability methods bias the nature of discoverable rules. Different interpretability
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methods highlight different types of information about the architecture and the sequences. Architecture analysis (1) is the most
commonly used method with current protein LMs for explaining blackbox LMs (Rogers, Kovaleva, and Rumshisky 2021;
Tenney, Das, and Pavlick 2019; Vig et al. 2021; Ruffolo, Sulam, and Gray 2022; Leem et al. 2021), but it can mostly only yield a
better understanding of the architecture itself, and not necessary specific sequence-function rules. A better understanding of the
architecture is nevertheless useful for improving the explainability and efficiency of the model. Linguistics-inspired
experimentation (2) (Linzen, Dupoux, and Goldberg 2016; Goldberg 2019; Linzen 2018; Ettinger 2020; Warstadt et al. 2020; Hu
et al. 2020), aims to find correlation between already known rules and the LM, by testing it with hand-crafted sequences that
either follow or violate a hypothesized rule. Linguistics-inspired experimentation requires a concrete hypothesized rule (often
based on pre-existing analysis), which might be unfeasible for protein sequences due to the vast space of all possible rules.
Studies aimed at examining the type of rules various deep neural network architectures are capable of learning (Bhattamishra,
Ahuja, and Goyal 2020; Clark, Tafjord, and Richardson 2020) can provide a way to limit the search space for rules, though the
limits might still not be sufficiently restrictive for exhaustive rule extraction. Grammar inference methods for deep neural
networks (3), which can extract rules of a predefined power (Weiss, Goldberg, and Yahav 2020; Eyraud and Ayache 2021; Q.
Wang et al. 2018) do not require an a priori hypothesis for a concrete rule, but efficient algorithms as of now are limited to
simpler architectures (e.g., RNNs) and are not yet practically suitable for more large-scale rule extraction.

The research goal of theoretical linguistics is to describe natural language with interpretable and
explanatory rules, i.e., a grammar. To this end, linguistics applies iterative and analytical methodologies
that are sustained by the relative ease of principled and fast data collection from speakers. In contrast,
natural language LMs, which were developed in the field of NLP for primarily language engineering
applications, prioritize accurate modeling of language data over discovering facts about language.
Originally, symbolic language models in NLP were built based on the rules obtained from basic
linguistics research, but with the rise of neural network models, high-performing, unsupervised, statistical
LMs now vastly outnumber symbolic language models (Church 2011; Church and Liberman 2021).

More recently, the need for transforming black-box models into transparent, interpretable glass-box
models has resulted in an increasing effort for obtaining better interpretability from deep natural language
LMs (Rogers, Kovaleva, and Rumshisky 2021). For example, BERTology, a research program dedicated
to interpreting the BERT language model, has developed out of this need. Improving model
interpretability is crucial to better understand what exactly these models learn, and on a more practical
level, to be able to pinpoint the causes for their failures (accountability). Among others,
linguistics-inspired methods to probe LMs have been popular in NLP research (Linzen 2018; Ettinger
2020; Hu et al. 2020). Similar efforts, however, have not been widely adopted for protein LMs (Vig et al.
2021), and we argue that incorporation of interpretability and explainability concerns should be an
essential part of protein LM design from the start.

Inferring rules from protein LMs with interpretability methods is an integral step in the rational protein
engineering pipeline (Akbar et al. 2022) (Figure 4A). A protein LM that has incorporated the design
considerations discussed so far should have ideally learned relevant sequence-function rules. However, so
far, rules remain hidden within the black-box model. Various interpretability and rule-extraction
methodologies are then needed to find possible sequence-function rules and use them to inform rational
protein design and novel protein synthesis (Akbar et al. 2022). It is crucial that the inferred rules are used
as guidance rather than true answers about biology, and that they are experimentally validated. The novel
proteins designed based on the inferred rules can in turn serve as additional data for further LM training
after experimental validation. Rigorous interpretability-focused examination can also help evaluate
whether well-performing models have learned truly meaningful representations and sequence-function
mappings (McCoy, Pavlick, and Linzen 2019; McCoy et al. 2021; Niven and Kao 2019).
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We distinguish three types of interpretability methods: architecture analysis, linguistics-inspired
experimentation, and grammatical inference (Figure 4B). The choice of method biases the type of
information that can be learned about the LM and the modeled sequences so it is crucial to be aware of
the limitations inherent in the chosen method. Broadly, there are two types of information that can be
gained: the localization of specific types of knowledge in the architecture, and the specific
sequence-function rules that the model has successfully learned (Figure 4B, rightmost column).

Architecture analysis (e.g., studying specific layers in the architecture, probing the pre-trained
embeddings, interpreting attention pattern heatmaps and saliency maps) can yield information about
where and how the model architecture stores various types of knowledge about the sequence, and it is by
far the most popular method of analyzing LM knowledge. Understanding the localization and method of
knowledge storage in the architecture can improve the explainability and efficiency of the model. For
example, in natural language BERT, it was found that lower layers possess information about linear word
order, while the middle layers encode more hierarchical, syntactic information (Rogers, Kovaleva, and
Rumshisky 2021; Tenney, Das, and Pavlick 2019). For protein LMs, attention patterns were shown to
correlate with amino acid contact in the protein structure (Vig et al. 2021; Ruffolo, Sulam, and Gray 2022;
Leem et al. 2021). At the same time, the usefulness of this knowledge remains limited for rational protein
design, as it does not contribute to basic biological knowledge about the protein sequences. Furthermore,
these types of explainability methods are often reliant on subjective human interpretation (Rudin 2019;
Adebayo et al. 2021) and are demonstrated on a very small number of examples (Ruffolo, Gray, and
Sulam 2021; Leem et al. 2021). As a result, the accuracy of these methods might be compromised. It is
thus crucial to employ them with caution, and simulated ground truth data can help with a controlled
benchmarking.

The two other methods, linguistics-inspired experimentation and grammatical inference can shed light on
generalizable, well-defined sequence-function rules that the model has learned. Gaining such
generalizable sequence-function rules is the most useful information for rational protein design, as they
have the potential for leading to a more complete ‘grammar’ of protein languages. In linguistics-inspired
experimentation, researchers probe the knowledge of the model of a hypothesized sequence rule by
feeding it constructed sequences that either follow or violate the rule (Linzen, Dupoux, and Goldberg
2016; Goldberg 2019; Linzen 2018; Ettinger 2020; Warstadt et al. 2020; Hu et al. 2020). For this type of
experiment, it is typical to construct materials that are similar to those used in psycholinguistics
experiments that probe human language processing capabilities. For example, Goldberg (2019) has found
that BERT can distinguish near perfectly between sentences such as the grammatical “The game that the
guards hate is bad” and the ungrammatical “The game that the guards hate are bad”, indicating that
BERT has learned structure-based subject-verb agreement rules in English, even when there are
intervening distractor nouns (Goldberg 2019). This type of linguistics-inspired experimentation has the
same challenges as psycholinguistics experimentations in that the design of the experiment must
rigorously rule out possible confounding factors. An additional challenge of applying this method to
protein LMs is that it requires a priori knowledge of a concrete hypothetical rule to test. Since the goal for
protein LMs is to learn new rules, applying this methodology requires a substantial amount of guess work.
Even if the hypothesis space of possible rules is limited based on domain knowledge in biology and
theoretical analysis of the computational capacity of LM rule knowledge (Bhattamishra, Ahuja, and Goyal
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2020; Clark, Tafjord, and Richardson 2020), it might still remain too vast to systematically test with this
method.

Finally, there is a long history of developing grammatical inference algorithms with the purpose of
extracting grammar (i.e., a set of rules) from a set of strings (Gold 1967; Angluin 1987). For example,
Angluin’s L* algorithm can learn a finite-state automata that describes a set of strings, if membership and
equivalence queries are allowed (Angluin 1987). More recent research has attempted to apply these
algorithms to extract grammar from neural networks. Weiss et al. have shown, for example, that the L*
algorithm can be used to obtain a finite-state automata from an RNN, where the RNN itself serves as the
oracle (Weiss, Goldberg, and Yahav 2020). The advantage of grammatical inference compared to
linguistically inspired methods is that it does not require concrete hypothesized rules to use; however, it
still requires a priori restriction on the class of possible rules, as there is no algorithm that can infer
patterns generated by a Turing-complete algorithm. Another disadvantage of grammatical inference
algorithms is that as of now, efficient algorithms only exist as proof of concept, for relatively simple
models (mainly RNNs) and types of rules, and also cannot handle noisy input data well. Nevertheless,
these algorithms could be potentially useful for applying to well-performing protein LMs as the
grammatical inference field develops better algorithms (Eyraud and Ayache 2021; Q. Wang et al. 2018).

In summary, well-designed and well-performing protein LMs can only reach their full potential to be
useful for rational protein design as transparent glass-box models with thoroughly understood,
interpretable rules. We have identified three types of methodology (architecture analysis, linguistic
experimentation, and grammatical inference), and each of them biases the type of information that can be
gained about the LM and all of them requires a better a priori understanding of the types of biological
rules that exist in protein sequences. Therefore, in order to access a full, transparent understanding of a
protein LM, there needs to be ongoing probing of the LM that uses a diversity of methodology. An
employment of ground truth (simulated) data can further help with examining these interpretability
methods (Robert et al. 2021).

6 Conclusions

Similarities between protein and natural language sequences have inspired the use of LMs for protein
sequences, which are originally tools for modeling linguistic sequences. Self-supervised protein LMs
have a potential for identifying relevant sequence rules that can be further experimentally tested, and
thereby contributing to fundamental questions in biological research and accelerating the rational protein
therapeutics design. However, current practice in designing and building protein LMs have fallen short of
appropriately adapting these models to protein sequences due to a lack of a deeper understanding on how
they were originally built for modeling linguistic sequences. In this Perspective, we have highlighted
various parts of the LM pipeline (pre-training data, tokenization, token embedding, sequence embedding,
and rule extraction), and we have shown how understanding the original linguistic intent underlying each
of these steps can inform the building of more appropriate protein LMs that answer specific downstream
questions of interest. Protein LMs that have thoughtfully incorporated the considerations discussed at
each point are then more likely to have learned the relevant biological rules for the sequences they model,
and thus may be better suited for successful rule-extraction that can be used for rational protein design.
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